
MATH20132 Calculus of Several Variables. 2020-21

Solutions to Problems 7: Graphs, level sets, parametric sets,
Implicit & Inverse functions

Inverses

1. Let f : R2 → R2 be the function

f(x) =

(
exp(x) cos(y)

exp(x) sin(y)

)
,

where x = (x, y)T ∈ R2.

i. Prove that the linear map dfa : R2 → R2 has an inverse for all a ∈ R2

but that f does not have an inverse.

ii. Let f0 : U = { (x, y)T ∈ R2 | −π < y < π} → R2 be the restriction of f .
Prove that f0 is an injection.

iii. If g : f0(U) → U is inverse of f0 find the Jacobian matrix of g at
b = f0 (a) .

Hint: Use the Chain Rule.

Solution i. A linear map has an inverse iff the associated matrix is invertible.
The associated matrix of dfa is the Jacobian matrix

Jf(x) =

(
ex cos y −ex sin y

ex sin y ex cos y

)
.

This has determinant e2x
(
cos2 y + sin2 y

)
= e2x 6= 0 for all x ∈ R2. Thus,

for any a ∈ R2, Jf (a) is invertible, in which case dfa has an inverse.

Because

f

((
x

y + 2π

))
= f

((
x
y

))
the function f is not an injection and thus does not have an inverse.

ii. To see that f0 is an injection assume f0 (x1) = f0 (x2) for some x1 =
(x1, y1)

T , x2 = (x2, y2)
T ∈ U . Then

ex1 = |f0 (x1)| = |f0 (x2)| = ex2 ,
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so x1 = x2 = x, say. Next(
ex cos y1
ex sin y1

)
= f0 (x1) = f0 (x2) =

(
ex cos y2
ex sin y2

)
.

so cos y1 = cos y2 and sin y1 = sin y2. The only solution of these in the
restricted range −π < y1, y2 < π is y1 = y2. Hence

x1 =

(
x1
y1

)
=

(
x2
y2

)
= x2,

and so f0 is injective.

iii. Since g◦f0 = 1U the Chain Rule gives Jg(f0(a)) Jf0(a) = I2, so, as noted
above,

Jg(b) = Jf0(a)−1 =

(
ea cos b −ea sin b

ea sin b ea cos b

)−1

= e−2a

(
ea cos b ea sin b

−ea sin b ea cos b

)
=

(
e−a cos b e−a sin b

−e−a sin b e−a cos b

)
.

2. State Inverse Function Theorem:

i. Define the function f : R2 → R2 by x 7→ (x2y, xy2)
T
.

a. Prove that f has a local inverse at a = (a, b)T (i.e. has an differ-
entiable inverse when restricted to some open set containing a) if
and only if ab 6= 0.

b. Find the Jacobian matrix Jg
(
f(a)

)
of the local inverse g = f−1

at f(a), when it exists.

ii. Define the function f : R3 → R3 by x 7→ (yz, xz, xy)T .

a. Prove that f has a local inverse at a = (a, b, c)T (i.e. has an dif-
ferentiable inverse when restricted to an open set containing a) if
and only if abc 6= 0.

b. Find the Jacobian matrix Jg
(
f(a)

)
of the local inverse g = f−1

at f(a), when it exists.
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Solution From the notes the Inverse Function Theorem: Suppose that f :
U ⊆ Rn → Rn is a C1-function such that for some a ∈ U the Jacobian matrix
Jf(a) is of full rank then f is locally invertible. That is, there exists an open
set V : a ∈ V ⊆ U, such that

• f : V → f(V ) is a bijection,

• f(V ) is an open subset of Rn,

• the inverse function g = f−1 : f(V ) → V is C1 and dgb = df−1a , or
Jg (b) = Jf(a)−1 , where b = f(a).

i.a. The Jacobian matrix at the general point a = (a, b)T is

Jf(a) =

(
2ab a2

b2 2ab

)
.

Then, by the Inverse Function Theorem, f is locally invertible at a iff Jf(a)
is invertible iff det Jf(a) 6= 0 iff 3a2b2 6= 0 iff ab 6= 0.

b. If g is the local inverse to f then g (f(x)) = x and the Chain Rule gives
Jg (f(x)) Jf(x) = I. Choose x = a so Jg (f(a)) Jf(a) = I. Thus

Jg (f(a)) =
1

3a2b2

(
2ab −a2
−b2 2ab

)
.

ii. a. The Jacobian matrix of f is

Jf(a) =

 0 c b
c 0 a
b a 0

 and det Jf(a) = abc.

Thus Jf(a) is invertible if, and only if, abc 6= 0.

In particular abc 6= 0 implies Jf(a) is invertible which in turn implies f
is locally invertible by the Inverse Function Theorem.

Conversely if f is locally invertible there exists g such that g◦f is the iden-
tity when the Chain Rule implies Jg

(
f(a)

)
Jf (a) = I, so Jf (a) is invertible

which implies abc 6= 0.

Hence f is locally invertible if, and only if, abc 6= 0.

b. For the inverse g, from Jg
(
f(a)

)
Jf (a) = I above we get

Jg
(
f(a)

)
= Jf (a)−1 =

1

2abc

 −a2 ab ac
ab −b2 bc
ac bc −c2

 .
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You can find this inverse by using row operations or, perhaps, the adjoint
matrix (the transpose of the cofactor matrix).

3. Proof of the Inverse Function Theorem Assume that f : U ⊂ Rn →
Rn is a C1-function such that at a ∈ U the Jacobian matrix Jf (a) is of
full-rank. Prove that the Inverse Function Theorem follows by applying the
Implicit Function Theorem to the function h : Rn × U ⊆ R2n → Rn defined
by

h

((
x

y

))
= x− f(y) , where x ∈ Rn, y ∈ U.

Hint: The important observation is that by definition of h,

h

((
f(a)

a

))
= f(a)− f(a) = 0.

So, setting

p =

(
f(a)

a

)
,

we have h(p) = 0 as required for the Implicit Function Theorem. To deduce
anything from that Theorem it is required that Jh (p) is of full rank. What
is Jh (p)?

Solution Follow the hint and define h : Rn × U ⊆ R2n → Rn by

h

((
x

y

))
= x− f(y) .

Given w ∈ Rn × U write it as w =
(
xT ,yT

)T
with x ∈ Rn and y ∈ U .

The Jacobian matrix of h at w is then

Jh(w) = (In | − Jf(y)) .

Let

p =

(
f (a)
a

)
∈ Rn × U,

with a the point at which Jf(a) is non-singular. Then Jh(p) = (In | − Jf(a))
and, since Jf(a) is non-singular, the last n columns of Jf (p) are linearly
independent.

Hence, by the Implicit Function Theorem, (and no permutation of coor-
dinates is required), there exists
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• an open set A ⊆ Rn containing f(a) ,

• a C1-function φ : A→ Rn and

• an open set B ⊆ Rn × U containing p such for
(
xT ,yT

)T ∈ B, (x,y ∈
Rn),

h

((
x

y

))
= 0 if, and only if, x ∈ A and y = φ (x) .

Note that the set B can be written as A × C for some open set C ⊆ Rn.
Thus we have

x = f(y) ⇐⇒ x− f(y) = 0 ⇐⇒ h

((
x

y

))
= 0 ⇐⇒ y = φ (x) .

This gives the existence of a C1-inverse.

Image or Parametric sets are locally graphs.

4. Show that the following Image sets are locally graphs around the point
given.

i.
{

((4 + 2 cos t) cos s, (4 + 2 cos t) sin s, 2 sin t)T : s, t ∈ R
}

with q = (3π/4, π/4)T ,

ii.
{

(xy2, x2 + y, x3 − y2, y2)T : x, y ∈ R
}

, with q = (−1, 2)T ,

iii.
{

(cos t, sin t, t)T : t ∈ R
}

with q = 3π.

Solution To show that the image set of F : Rr → Rn is locally a graph we
apply a Corollary of the Inverse Function. This says that if the rows 1 to r
of JF(q) are linearly independent then the image set is the graph of some
function φ : W ⊆ Rr → Rn−r with q ∈ W .

i.

JF(q) =

 − (4 + 2 cos t) sin s −2 sin t cos s

(4 + 2 cos t) cos s −2 sin t sin s

0 2 cos t


s=q

=

 −
(
4+
√

2
)
/
√

2 1

−
(
4+
√

2
)
/
√

2 −1

0
√

2


The first two rows are linearly independent and so the image set can be

written as a graph of the first two variables in some open set around q.
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ii.

JF(q) =


y2 2xy

2x 1

3x2 −2y

0 2y


x=q

=


4 −4

−2 1

3 −4

0 4

 .

The first two rows are linearly independent and so the image set can be
written as a graph of the first two variables in some open set around q.

iii. This is already a graph. Usually a graph is written with the variables
first followed by the functions of the variables. Here we have a permutation
of this, functions first variable last.

Higher order derivatives

5. Return to Question 7 on Sheet 6. We showed that for the level set of
(x, y, u, v)T ∈ R4 satisfying

x2 + y2 + 2uv = 4

x3 + y3 + u3 − v3 = 0,

there exists an open subset of R4 containing the solution p = (−1, 1, 1, 1) in
which the u and v can be given as functions of x and y, with (x, y)T in some
open subset of R2 containing the point q = (−1, 1)T . Find the second order
derivatives of u and v.

A purpose of Question 7 was to highlight the fact that when conditions
are satisfied the Implicit Function Theorem ensures that functions exist, but
gives no further information about them. Nonetheless their derivatives can
be found. In this question we continue to find their second derivatives.

Advice for Exams Know how to take second derivatives. Many students
failed to calculate correctly second derivatives in the exam. Make sure that
the exam is not the first time you attempt a question such as this one.

Solution Write the level set f−1 (0) as the system

x2 + y2 + 2uv = 4 (1)

x3 + y3 + u3 − v3 = 0.

By differentiating w.r.t.x and w.r.t y we found in Question 7 on Sheet 6 that

∂u

∂x
(q) = 0

∂v

∂x
(q) = 1,

∂u

∂y
(q) = −1 and

∂v

∂y
(q) = 0. (2)
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Differentiate the system (1) twice, w.r.t x both times to get

2 + 2
∂2u

∂x2
v + 2

∂u

∂x

∂v

∂x
+ 2

∂2v

∂x2
u+ 2

∂v

∂x

∂u

∂x
= 0

6x+ 6u

(
∂u

∂x

)2

+ 3u2
∂2u

∂x2
− 6v

(
∂v

∂x

)2

− 3v2
∂2v

∂x2
= 0.

Then at p, using (2), we get the simpler system

∂2u

∂x2
+
∂2v

∂x2
= −1 and

∂2u

∂x2
− ∂2v

∂x2
= 4.

Solve these to give
∂2u

∂x2
=

3

2
and

∂2v

∂x2
= −5

2
,

where the derivatives are evaluated at q.

Return and differentiate (1) first w.r.t x and then w.r.t. y to get

2v
∂2u

∂y∂x
+ 2

∂u

∂x

∂v

∂y
+ 2

∂u

∂y

∂v

∂x
+ 2u

∂2v

∂y∂x
= 0,

6u
∂u

∂y

∂u

∂x
+ 3u2

∂2u

∂y∂x
− 6v2

∂v

∂y

∂v

∂x
− 3v2

∂2v

∂y∂x
= 0.

At p, again using (2), this becomes

∂2u

∂y∂x
+

∂2v

∂y∂x
= 1 and

∂2u

∂y∂x
− ∂2v

∂y∂x
= 0.

Hence
∂2u

∂y∂x
=

∂2v

∂y∂x
=

1

2
.

I do not give the details for the mixed derivative in the reversed order,
but you can check that ∂2u/∂x∂y = ∂2u/∂y∂x and the same for v. It can,
in fact, be shown that the order is immaterial whenever f is C2.

Finally, differentiate the system w.r.t y twice to get

2 + 2v
∂2u

∂y2
+ 2

∂u

∂y

∂v

∂y
+ 2

∂u

∂y

∂v

∂y
+ 2u

∂2v

∂y2
= 0

6y + 6u

(
∂u

∂y

)2

+ 3u2
∂2u

∂y2
− 6v

(
∂v

∂y

)2

− 3v2
∂2v

∂y2
= 0.
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At p this reduces to

∂2u

∂y2
+
∂2v

∂y2
= −1 and

∂2u

∂y2
− ∂2v

∂y2
= −4.

Hence
∂2u

∂y2
= −5

2
and

∂2v

∂y2
=

3

2
.

Best Affine Approximations.

Recall that the Best Affine Approximation to a function f at a point a is
given by

f(a) + dfa(x− a) = f(a) + Jf(a)(x− a) .

6. Write down the Best Affine Approximation to

i. f(x) = x (x+ y) at a = (2,−1)T , and what value does the approxima-
tion give at a′ = (2.1,−0.9)T ?

ii. f(x) = xy + yz + xz at a = (−1,−1, 4)T , and what value does the
approximation give at a′ = (−0.9,−1.1, 4.1)T ?

iii.

f(x) =

(
xy2

x2y

)

at a = (2,−3)T , and what value does the approximation give at a′ =
(1.9,−3.1)T ?

Hint These functions have been seen previously on Sheet 4.

Solution i. As seen in Question 1 Sheet 4, the Fréchet derivative is dfa(t) =
(2α + β) s + αt for general a = (α, β)T and t = (s, t)T . With the specific
a = (2,−1)T this becomes dfa(t) = 3s+ 2t. Then, with t = x− a,

dfa(x− a) = 3 (x− 2) + 2 (y + 1) = 3x+ 2y − 4,

where x = (x, y)T . Thus, the Best Affine Approximation is

f (a) + 3x+ 2y − 4 = 3x+ 2y − 2.

At a′ = (2.1,−0.9)T the approximation is 2.5. The actual value is 2.52.
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ii. As seen in Question 2 Sheet 4, the derivative is

dfa(t) = (β + γ) s+ (α + γ) t+ (α + β)u

for general a = (α, β, γ)T and t = (s, t, u)T . With the specific a = (−1,−1, 4)T

this becomes dfa(t) = 3s+ 3t− 2u. Thus, the Best Affine Approximation is

f(a) + 3 (x+ 1) + 3 (y + 1)− 2 (z − 4) = 3x+ 3y − 2z + 7.

At a′ = (−0.9,−1.1, 4.1)T the approximation is −7.2. The actual value is
−7.21.

iii. As seen in Question 4 Sheet 4, the derivative is

dfa(t) =

(
β2s+ 2αβt

2αβs+ α2t

)
.

With the specific a = (2,−3)T this becomes

dfa(t) =

(
9s− 12t
−12s+ 4t

)
.

Thus, the Best Affine Approximation is

f (a) +

(
9 (x− 2)− 12 (y + 3)

−12 (x− 2) + 4 (y + 3)

)
=

(
9x− 12y − 36

−12x+ 4y + 24

)
.

At a′ = (1.9,−3.1)T the approximation is
(

18.3 −11.2
)T
. The actual

value is
(

18.259 −11.191
)T
.

There is a form of Taylor’s Theorem for scalar-valued functions of several
variables. This can be used to estimate the error between the Best Affine Ap-
proximation and the original function. See my web site for (non-examinable)
notes on this.

7. Define the function f : R2 → R2 by f(x) = (x3−2xy2, x+y)T . Show that
f locally invertible at a = (1,−1)T .

What is the Best Affine Approximation to the inverse function near
b = f(a) = (−1, 0)T ?

What approximation does this give to f−1
(

(−0.9, 0.1)T
)

?
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Solution The Jacobian matrix is

Jf(a) =

(
3x2 − 2y2 −4xy

1 1

)
(1,−1)T

=

(
1 4
1 1

)
.

The matrix is of full-rank and so, by the Inverse Function Theorem, f is
invertible in some open set containing a (i.e. it is locally invertible). From
the Chain Rule applied to f ◦ f−1 = id we deduce that the Jacobian of the
inverse is the inverse of the Jacobian. That is, with b = f (a), the Jacobian
of the inverse is

Jf−1(b) = Jf(a)−1 =
1

3

(
−1 4

1 −1

)
.

Then the Best Affine Approximation to f−1 near b = f(a) = (−1, 0)T is,
as a function of u = (u, v)T ∈ R2,

f−1(b) + Jf−1(b) (u− b) = a+Jf(a)−1 (u− f(a))

=

(
1
−1

)
+

1

3

(
−1 4

1 −1

)(
u+ 1
v

)

=
1

3

(
2− u+ 4v

−2 + u− v

)
.

The approximation this gives to f−1
(

(−0.9, 0.1)T
)

is (1.1, −1)T . To get

some idea how good (or bad) this is, note that f
(

(1.1, −1)T
)

= (−0.869, 0.1)T .

The Inverse Function Theorem tells us when an inverse function exists
but not what it is. It is an example of an existence result. Nonetheless we
can find the Best Affine Approximation to the inverse function.

Tangent Spaces for Graphs

8. For each of the following scalar-valued functions φ, find both a basis for
the Tangent Space and the equation of the Tangent Plane to the graph of ϕ
for the given point on the graph. For the latter give your answer in the form
“the Tangent plane to ϕ at q is the graph of the function g (x) = ...”.

i. ϕ(x) = 4x2 + y2, q = (1,−1)T ∈ R2,
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ii. ϕ(x) =
√

9− x2 − y2, q = (2, 1)T ∈ R2,

iii. ϕ(x) = 9− x2 − y2, p = (2,−2, 1)T ∈ Gϕ,

iv. ϕ(x) = 5/ (1 + x2 + 3y2) , p = (1,−1, 1)T ∈ Gϕ.

Solution First recall part of the Theory: From the notes:

• the graph of ϕ is the image of

F(x) :=

(
x

ϕ(x)

)
,

and a basis for the Tangent Space at p = F(q) is given by the columns of
JF(q).

• The Jacobian matrix of F is

JF(x) =

(
I

Jϕ(x)

)
,

where I is the identity matrix.

• The Tangent Plane to graph of ϕ at p is the image of the Best Affine
Approximation to F at q.

• The Best Affine Approximation to F at q is

F(q) + JF(q) (x− q) =

(
q

ϕ(q)

)
+

(
I

Jϕ(q)

)
(x− q)

=

(
q

ϕ(q)

)
+

(
x− q

Jϕ(q)(x− q)

)

=

(
x

ϕ(q) + Jϕ(q)(x− q)

)
.

That is, the Best Affine Approximation to F at q is the graph of the Best
Affine Approximation to ϕ at q.

i. First note that, given q = (1,−1)T ∈ R2, we are looking for the Tangent
Space and plane at the point

p =

(
q

ϕ(q)

)
=

 1
−1

5


11



on the graph. Next, Jϕ(x) = (8x2, 2y) so Jϕ(q) = (8,−2). Thus

JF(q) =

(
I2

Jϕ(q)

)
=

 1 0
0 1
8 −2

 ,

and hence the columns of this matrix, the vectors
 1

0
8

 ,

 0
1
−2


form a basis for the Tangent Space at p.

Also, since ϕ(q) = 5, the Best Affine Approximation to ϕ at q is

ϕ(q) + Jϕ(q)(x− q) = 5 +
(

8 −2
)( x− 1

y + 1

)
= 8x− 2y − 5.

Hence the Tangent Plane to the graph of ϕ at p is the graph of the function
g (x) = 8x− 2y − 5.

Figure for Question 8i:

q

p

x

y

z

12



ii. This time p = (2, 1, 2)T while ϕ(q) = 2. Next

Jϕ(x) =

(
− x√

9− x2 − y2
, − y√

9− x2 − y2

)
,

so Jϕ(q) = (−1,−1/2). Thus

JF(q) =

(
I2

Jϕ(q)

)
=

 1 0
0 1
−1 −1/2

 ,

and so (1, 0,−1)T and (0, 1,−1/2)T form a basis for the Tangent Space at p.

The Best Affine Approximation to ϕ at q is

ϕ(q) + Jϕ(q)(x− q) = 2 +
(
−1 −1/2

)( x− 2
y − 1

)
= −x− 1

2
y +

9

2
.

Hence the Tangent plane to the graph of ϕ at p is the graph of the function
g (x) = −x− y/2 + 9/2.

Figure for Question 7ii.

q

p

x y

z

The boundary of the surface is jagged since it is plotted using rectangular
coordinates rather than spherical ones.
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In the next two parts we are given a point p on the graph. Being on the
graph means that

p =

(
q

ϕ (q)

)
,

for some q ∈ R2.

iii. Since p = (2,−2, 1)T then q = (2,−2)T and ϕ (q) = 1. Also

Jϕ(x) =
(
−2x −2y

)
in which case Jϕ(q) =

(
−4 4

)
.

Thus the columns of (
I2

Jϕ(x)

)
=

 1 0
0 1
−4 4

 ,

namely (1, 0,−4)T and (0, 1, 4)T , form a basis for the Tangent Space at p.

The Best Affine Approximation to ϕ at q is

1 +
(
−4 4

)( x− 2
y + 2

)
= −4x+ 4y + 17.

Hence the Tangent Plane to the graph of ϕ at p ∈ Gϕ is the graph of the
function g (x) = −4x+ 4y + 17.

iv. Since p = (1,−1, 1)T then q = (1,−1)T and ϕ(q) = 1. Also

ϕ(x) =
5

1 + x2 + 3y2
implies Jϕ(x) =

(
− 10x

(1 + x2 + 3y2)2
, − 30y

(1 + x2 + 3y2)2

)
.

So Jϕ(q) = (−2/5, 6/5). Thus the columns of(
I2

Jϕ(x)

)
=

 1 0
0 1

−2/5 6/5


form a basis for the Tangent Space to Gϕ at p. We can scale these and give

the basis as (5, 0,−2)T and (0, 5, 6)T .

The Best Affine Approximation to ϕ at q is

1 +

(
−2

5

6

5

)(
x− 1
y + 1

)
=
−2x+ 6y + 13

5
.
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Hence the Tangent Plane to the graph of ϕ at p ∈ Gϕ is the graph of the
function g (x) = (−2x+ 6y + 13) /5.

Figure for Question 8iv:

q

p

x

y

z

9. Repeat Question 8 for the vector-valued function

φ (x) =

(
xy

x2 + y2

)
with x = (x, y)T ∈ R2, at p = (2,−1,−2, 5)T ∈ Gφ.

Solution First note that p =
(
qT ,φ (q)T

)T
with q = (2,−1)T . Then

Jφ (x) =

(
y x

2x 2y

)
so Jφ (q) =

(
−1 2

4 −2

)
.

This matrix is of full rank so the column of(
I2

Jφ (q)

)
=


1 0
0 1
−1 2

4 −2

 ,

that is (1, 0,−1, 4)T and (0, 1, 2,−2)T , form a basis to the Tangent Space to
Gϕ at p.

The Best Affine Approximation to ϕ at q is

ϕ(q) + Jϕ(q)(x− q) =

(
−2
5

)
+

(
−1 2
4 −2

)(
x− 2
y + 1

)

=

(
−x+ 2y + 2

4x− 2y − 5

)
.
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Hence the Tangent Plane to the graph of ϕ at p ∈ Gϕ is the graph of the
function

g (x) =

(
−x+ 2y + 2

4x− 2y − 5

)
.

16



Solutions to Additional Questions 7

9. Explain why

f : R2 → R2,

(
x
y

)
7→
(

xy
x2 − y2

)
is invertible in some neighbourhood of p = (1, 1)T .

Calculate the Fréchet derivative of the inverse at q = f (p) = (1, 0)T .

Solution The Jacobian matrix at x ∈ R2 is

Jf(x) =

(
y x
2x −2y

)
.

This is invertible for all x 6= 0. In particular the Jacobian matrix is
invertible at p and so, by the Inverse Function Theorem, f is locally invertible
near p.

Also, from the Inverse Function Theorem, if g is the inverse of f then

Jg(q) = Jf(p)−1 =

(
1 1
2 −2

)−1
=

1

4

(
2 1
2 −1

)
The question asked for the Fréchet derivative:

dgq (t) =
1

4

(
2 1
2 −1

)(
s
t

)
=

1

4

(
2s+ t
2s− t

)
,

for t = (s, t)T ∈ R2.

10. At what points are the functions below, from R×R+×R to R3, invertible?

i.
f1(x) =

(
x2 + 2xz, 2

√
y, z2 + xz

)T
,

ii
f2(x) =

(
x2 + xz, 2

√
y, z2 + xz

)T
,

iii.
f3(x) =

(
x2 + xz/2, 2

√
y, z2 + xz

)T
.

Solution i. The Jacobian matrix is

Jf1(x) =

 2x+ 2z 0 2x

0 1√
y

0

z 0 2z + x

 .
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The determinant is
2
√
y

(
(x+ z)2 + z2

)
.

This is only zero if z = 0 and x = 0. Hence f1 is invertible for all x except
for the straight line (0, y, 0)T : y > 0.

ii. It can be checked that

det Jf2(x) =
2
√
y

(x+ z)2

Hence f2 is invertible for all x except for the plane (x, y,−x)T : x ∈ R, y > 0.

iii. It can be checked that

det Jf3(x) =
1
√
y

(
2 (x+ z)2 − z2

)
Hence f3 is invertible for all x except for the two planes

(
x, y,−

√
2x/
(√

2− 1
))T

and
(
x, y,−

√
2x/
(√

2 + 1
))

: x ∈ R, y > 0.

11. Consider the surface in R4 :


yz
xz
xy
xyz

 : x ∈ R3 \ {0}

 =

{(
f(x)
xyz

)
: x ∈ R3 \ {0}

}
,

where f(x) = (yz, xz, xy)T . The point p = (−2, 2,−1,−2)T on the surface
is the image of a = (1,−1, 2)T .

I have introduced the function f since it was the subject of Question 2ii
where it was shown that f has an inverse in an open set containing a. That
is there exists V : a ∈ V ⊆ R3 and W ⊆ R3 such that f : V → W has an
inverse, g say. For a general x ∈ V write s = f(x), so s ∈ W ⊆ R3. Also, let
b = f(a) = (−2, 2,−1)T .

Since g is the inverse of f we have x = g(s). This means the coordinates
of x, i.e. x, y and z, can be written as functions of s. Thus xyz is a function
of s, i.e. xyz = φ (s), say. Then our surface is locally a graph:{(

f(x)
xyz

)
: x ∈ V

}
=

{(
s

φ (s)

)
: s ∈ W

}
. (3)

We know little about φ : W → R, though you can check that φ (b) = −2.
We can, though, calculate the derivative at b.

18



Question Calculate Jφ(b).

Hint Write k(x) = xyz for x ∈ V , express φ as a convolution of g and k and
apply the Chain Rule .

Solution Write k(x) = xyz for x ∈ V . Then for s ∈ W we have, from (3) ,

φ(s) = xyz = k(x) = k(g(s)) .

Apply the Chain Rule, so Jφ(s) = Jk(g(s)) Jg(s). Choose s = b :

Jφ(b) = Jk(g(b)) Jg(b) = Jk(a) Jg(b) , (4)

since a = g(b). The second matrix on the right hand side of (4) has been
calculated in Question 2ii:

Jg(b) = Jg(f(a)) =
1

2abc

 −a2 ab ac
ab −b2 bc
ac bc −c2


a=(1,−1,2)T

=
1

4

 1 1 −2
1 1 2
−2 2 4

 .

The first matrix on right hand side of (4) is

Jk(a) = (yz, xz, xy)x=(1,−1,2)T =
(
−2, 2, −1

)
.

Therefore,

Jφ(b) =
1

4
(−2, 2,−1)

 1 1 −2
1 1 2
−2 2 4


=

1

2
(1,−1, 2) .

Note this answer looks coincidentally like aT/2. It is not a coincidence, in
general for a ∈ R3 \ {0} and b = f (a) ,

Jφ (b) =
1

2abc
(bc, ac, ab)

 −a2 ab ac
ab −b2 bc
ac bc −c2


=

1

2
(a, b, c) =

1

2
aT .

19



12. Define the function f : R2 → R2 by f
(
(u, v)T

)
= (u3 +uv+v3, u2−v2)T .

Show that f locally invertible at a = (1, 1)T .

What is the Best Affine Approximation to the inverse function near
b = f (a) = (3, 0)T ?

What approximation does this give to f−1 (b′) where b′ = (3.1,−0.2)T ?

Solution The Jacobian matrix is

Jf(a) =

(
3u2 + v u+ 3v2

2u −2v

)
(1,1)T

=

(
4 4
2 −2

)
.

The matrix is of full-rank and so, by the Inverse Function Theorem, f is
invertible in some open set containing a (i.e. it is locally invertible). From
the Chain Rule applied to f ◦ f−1 = id we deduce that the Jacobian of the
inverse is the inverse of the Jacobian. That is, with b = f (a), the Jacobian
of the inverse is

Jf−1(b) = Jf(a)−1 =
1

8

(
1 2
1 −2

)
.

Then the Best Affine Approximation to f−1 near b = f(a) = (3, 0)T is,
as a function of x = (x, y)T ∈ R2,

f−1(b) + Jf−1(b)(u− b) = a+Jf(a)−1 (u− f(a))

=

(
1
1

)
+

1

8

(
1 2
1 −2

)(
x− 3
y

)

=
1

8

(
5 + x+ 2y

5 + x− 2y

)
.

The approximation this gives to f−1
(

(3.1,−0.2)T
)

is (0.9625, 1.0625)T .

To get some idea how good (or bad) this is, note that f
(

(0.9625, 1.0625)T
)

=

(3.113...,−0.2025)T .

13. For additional practice For each function, find the Best Affine Approxi-
mation at the given point. With s = (s, t)T ∈ R2,

i. f(s) = (t cos s, t sin s, t)T , q = (π/2, 2)T ,
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ii. f(s) = (t2 cos s, t2, t2 sin s)T ,q = (0, 1)T ,

Solution i. The Best Affine Approximation is

f(q) + Jf(q) (s− q) =

 0
2
2

+

 −2 0
0 1
0 1

( s− π/2
t− 2

)

=

 −2s+ π
t
t

 .

Note that this is the same set as
 x

y
y

 : (x, y)T ∈ R2

 .

The plane can also be given simply as the level set {x ∈ R3 : z = y}.

ii. The Best Affine Approximation is

f(q) + Jf(q) (s− q) =

 1
1
0

+

 0 2
0 2
1 0

( s− 0
t− 1

)

=

 −1 + 2t
−1 + 2t

s

 .

Note that this is the same set as
 x

x
z

 : (x, z)T ∈ R2

 .

The plane can also be given simply as the level set {x ∈ R3 : x = y}.

14 In each of the following examples, find both a basis for the Tangent Space
and the equation of the Tangent Plane to the graph of φ for the given point:

i. φ(x) = x (x+ y) , at q = (2,−1)T ∈ R2,
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ii. φ(x) = (x− 1)2 + y2 at q = (0, 2)T ∈ R2,

iii. φ(x) = sin (xy2z3) at q = (π, 1,−1)T .

iv.

φ(x) =

(
xy2

x2y

)
at q = (2,−3)T , and then again at q = (2, 1)T ,

v.

φ(x) =

(
xy
yz

)
at q = (1,−1, 2)T .

Hint Most of these functions have appeared in previous questions. It may
save time to quote the results already proved.

Solution i. Look back to the answer to Question 6 to find that the Best
Affine Approximation to φ at q is g (x) = 3x + 2y − 4. The Tangent Plane
to φ at q is the graph of g :

(
x

g (x)

)
= x

 1
0
3

+ y

 0
1
1

+

 0
0
−4

 ,

and from this we get that (1, 0, 3)T and (0, 1, 1)T form a basis for the Tangent
Space.

ii. First calculate
Jφ (q) = ∇φ (q)T = (−2, 4) .

Then the Best Affine Approximation to φ at p is

g(x) = φ(q) + Jφ(q) (x− q) = 5 + (−2, 4)

(
x− 0
y − 2

)
= −2x+ 4y − 3.

The Tangent Plane to the graph of φ at q is the graph of g(x) = −2x+4y−3.
As in part i, from this we get a basis for the Tangent Space of (1, 0,−2)T

and (0, 1, 4)T .

iii. Look back to the answer to Question 2 Sheet 5 where the gradient
∇φ(q) = (1, 2π,−3π)T was calculated. Then the Tangent Plane to the graph
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of φ at q is the graph of

g(x) = φ(q) + Jφ(q)(x− q) = sin (−π) + (1, 2π,−3π)

 x− π
y − 1
z + 1


= x+ 2πy − 3πz − 6π.

A basis for the Tangent Space is then (1, 0, 0, 1)T , (0, 1, 0, 2π)T and (0, 0, 1,−3π)T .

iv. This function was the subject of Question 5ii, Sheet 5, but directly we
have

Jφ(q) =

(
y2 2xy

2xy x2

)
x=q

=

(
9 −12

−12 4

)
when q = (2,−3)T . Thus the Tangent Plane to the graph of φ at q is the
graph of

g(x) = φ(q) + Jφ(q)(x− q) =

(
18
−12

)
+

(
9 −12

−12 4

)(
x− 2
y + 3

)

=

(
9x− 12y − 36

−12x+ 4y + 24

)
.

A basis for the Tangent Space is then (1, 0, 9, −12)T and (0, 1, −12, 4)T .

When q = (2, 1)T ,

Jφ(q) =

(
1 4
4 4

)
.

Thus the Tangent Plane to the graph of φ at q is the graph of

g(x) = φ(q) + Jφ(q)(x− q) =

(
2
4

)
+

(
1 4
4 4

)(
x− 2
y − 1

)

=

(
x+ 4y − 4

4x+ 4y − 8

)
.

A basis for the Tangent Space is then (1, 0, 1, 4)T and (0, 1, 4, 4)T .

v. The Jacobian matrix is

Jφ(q) =

(
y x 0
0 z y

)
x=q

=

(
−1 1 0

0 2 −1

)
,
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when q = (1,−1, 2)T . Thus the Tangent Plane to the graph of φ at q is the
graph of

g(x) = φ(q) + Jφ(q)(x− q) =

(
−1
−2

)
+

(
−1 1 0

0 2 −1

) x− 1
y + 1
z − 2


=

(
−x+ y + 1
2y − z + 2

)
.

In fact, the graph of g(x) consists of the points

(
x

g(x)

)
=


x
y
z

−x+ y + 1
2y − z + 2

 = x


1
0
0
−1

0

+y


0
1
0
1
2

+z


0
0
1
0
−1

+


0
0
0
1
2

 .

A basis for the Tangent Space is then (1, 0, 0,−1, 0)T , (0, 1, 0, 1, 2)T and
(0, 0, 1, 0,−1)T .

15. Find the Tangent plane to the graph of

φ(x) =
x3 − y3 + 1

(x+ y)4 + 1
,

where x = (x, y)T ∈ R2, at the point (2,−1, 5)T on the graph.

Hint Multiply up before you differentiate.

Solution The point p = (2,−1, 5)T on the graph is
(
qT , φ(q)

)T
where

q = (2,−1)T . Following the hint write(
(x+ y)4 + 1

)
φ(x) = x3 − y3 + 1. (5)

Differentiate (5) w.r.t. x to get

4 (x+ y)3 φ(x) +
(
(x+ y)4 + 1

) ∂φ
∂x

(x) = 3x2.

Choose x = q when

4φ(q) + 2
∂φ

∂x
(q) = 12.
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But φ(q) = 5 so this rearranges to ∂φ(q)/∂x = −4.

Differentiate (5) w.r.t. y to get

4 (x+ y)3 φ(x) +
(
(x+ y)4 + 1

) ∂φ
∂y

(x) = −3y2.

Choose x = q when

4φ(q) + 2
∂φ

∂y
(q) = −3 and so

∂φ

∂y
(q) = −23

2
.

Hence

Jφ(q) =

(
−4,−23

2

)
.

The Tangent plane to a graph of a function is given by the graph of the
Best Affine Approximation to that function. In this case the Best Affine
Approximation to φ near q is

φ(q) + Jφ(q)(x− q) = 5 +

(
−4,−23

2

)(
x− 2
y + 1

)

= −8x+ 23y − 3

2
That is, the Tangent plane is 8x+ 23y + 2z = 3. As a graph

 x

y

(−8x− 23y + 3) /2

 : (x, y)T ∈ R2

 .

16 Find the Tangent plane to the graph of

φ (x) =
x2y + 2xy2

1 + x2 + y2

where x = (x, y)T ∈ R2, at the point q = (1, 2)T .

Solution Follow the method of the previous solution and multiply up to find

Jφ(q) = ∇φ(q)T =
1

18
(26, 7) .

The Tangent plane to a graph of a function is given by the graph of the
Best Affine Approximation to that function. In this case the Best Affine
Approximation to φ near q is

φ(q) + Jφ(q)(x− q) =
5

3
+

1

18
(26, 7)

(
x− 1
y − 2

)
=

26x+ 7y − 10

18
.
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